

the Fungitell® Bulletin

volume 10, issue 1

Topic: HEPATIC CLEARANCE OF (1→3)- β -GLUCAN; EFFECTS UPON CIRCULATING BDG TITER

Fungitell® Bulletins are intended as technical advisory communications and as such are disseminated to the general public in order to highlight the significance of (1→3)- β -D-Glucan on human health. These communications do not promote a specific drug, therapy nor make any representation or suggestion concerning the suitability or effectiveness of a particular drug or therapy in patients harboring (1→3)- β -D-Glucan. Fungitell® is an adjunct diagnostic assay to be utilized in conjunction with clinical signs and symptoms for the diagnosis of invasive fungal infection. Fungitell® is currently 510(k) cleared for the detection and quantification of (1→3)- β -D-Glucan in human serum and should be used and interpreted only in a manner consistent with the current Instructions for Use.

Discussion:

In the setting of invasive fungal disease, the (1→3)- β -Glucan (BDG) titer measured in circulating blood is a function of multiple factors. These include the fungal organism, the amount of fungal biomass or fungal burden, the anatomical site of infection, access to the circulation, and clearance efficiency (Garcia-Rubio, R. et. al., 2020; Agnelli, C. et. al., 2020; Liu, L. et. al., 2021; Ergun, M. et. al., 2021; Yan, J. et. al., 2000). To date, both animal models and patient studies have demonstrated that hepatic clearance is the major route to the reduction of circulating BDG. Yoshida, M. et al (1997) measured the clearance of I^{125} -labeled *Candida albicans* BDG injected *iv* into rabbits and found rapid clearance with a circulatory half-life of 1.4 and 1.8 minutes, for high (222 μ g/kg) and low (9.3 μ g/kg) doses, respectively. Assessing the BDG distribution 24 hours post-injection, they also demonstrated that approximately 80% of the injected BDG was associated with the liver. Cushion, M. and Finkelman, M.A. (unpublished data) also evaluated clearance in *Pneumocystis murina*-infected mice which were injected with BDG at intervals post infection with *p. murina*. An initial hyperbolic decay of titer was observed, followed by slower clearance (Fig. 1). The presence of *P. murina* infection did not hinder BDG clearance, as the same pattern of clearance was observed at 3, 5, and 7 weeks post-infection, albeit less complete at the later timepoints.

Additional studies have shown that the binding and clearance of BDG from the circulation occurs in liver sinusoids through binding to Kupffer cells (Yang, A.M., et. al., 2017). Kupffer cells are resident macrophages of the liver and bear Dectin-1 and Complement Receptor-3, both BDG binding receptors. Thus, with each transit of the liver, the blood has some of its BDG burden bound and removed from the circulation. In normal physiological status, this will lead to a steady state in the 10-40 pg/mL range for most individuals. In the circumstance of invasive fungal disease, this removal process may be overwhelmed leading to increased circulating BDG burdens (Miura, N. N. et. al., 1996).

Fungitell®

(1→3)- β -D-Glucan Assay

Bulletin Volume 10, issue 1
Publish Date: December 2021
CORP_0294

Corporate Headquarters

Associates of Cape Cod, Inc.
124 Bernard E. Saint Jean Drive
East Falmouth, MA 02536 USA
Tel: (508) 540-3444
www.accusa.com

United Kingdom

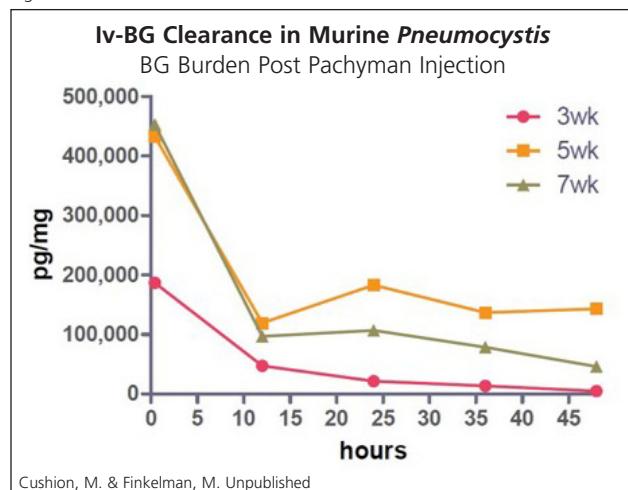
Associates of Cape Cod Int'l., Inc.
Deacon Park, Moorgate Road
Knowsley, Liverpool L33 7RX
United Kingdom
Tel: (44) 151-547-7444
www.acciu.co.uk

Europe

Associates of Cape Cod Europe GmbH
Opelstrasse 14
D-64546 Mörfelden-Walldorf, Germany
Tel: (49) 61 05-96 10 0
www.accusa.de

HEPATIC CLEARANCE OF (1→3)- β -GLUCAN; EFFECTS UPON CIRCULATING BDG TITER

In the circumstance of pulmonary invasive fungal disease, the translocation of BDG to the pulmonary circulation and subsequently to the heart results in the distribution of BDG-enriched blood to the peripheral circulation absent hepatic filtration. This may be a factor leading to the much higher peripheral blood BDG titers observed in pneumocystosis, relative to most other invasive fungal disease conditions (Costa, J.M., 2012).


Liver disease can result in decreased BDG clearance and higher peripheral blood BDG titers. Sanada, Y. et. al., (2012) evaluated serum BDG titers in pediatric liver failure patients, pre- and post-hepatic transit, by sampling from the portal vein and the peripheral circulation. They observed significantly higher BDG titer in the portal circulation compared to the peripheral blood, illustrating hepatic clearance. They also observed a negative correlation of PELD Score and BDG clearance, indicative of a reduction in hepatic clearance function. In a follow-up study of 20 patients indicated for liver transplant (Sanada, Y. et. al., 2014), similarly higher portal BDG burden was observed compared to the peripheral circulation ($P<0.001$). The median post-hepatic BDG clearance was 87.9%. It is important to note that in liver transplantation, early post-operative BDG titer may be difficult to interpret, due to the significant opportunity for patient contamination associated with the extensive intra-cavity use of gauze and surgical sponges (Levesque, E. et. al., 2015). These commonly used materials are observed to leach very large amounts of BDG which can result in elevated circulating BDG titers (Styczynski et. al., 2018).

The timing of post-operative circulating BDG titer observations in fungal infection diagnosis in the setting of liver transplantation is also of significance. Yamanouchi, K. et. al., (2011) observed that 47.2% of living donor transplant recipients had elevated serum BDG in the first five days post-transplant. The overall mortality rate of those with elevated versus non-elevated serum BDG was not different. However, the mortality rate of those with elevated BDG at ≥ 15 days post-transplant was 33.3% compared to 4.3% for those with high serum BDG at < 15 days. The later elevated BDG was felt to be associated with invasive fungal infection as

opposed to potential contamination during surgery. Early high BDG values that exceeded cutoff thresholds were considered, potentially, to be the result of both surgical materials contamination and delayed transplanted liver clearance function restoration.

As indicated above, the interpretation of circulating BDG titers in the setting of suspected invasive fungal disease requires a thorough understanding of the multiple host, clinical, and mycological factors which can assist the diagnostic process. In this context, attention to hepatic function is important.

Figure 1.

Discussion References:

Agnelli C, Bouza E, Del Carmen Martínez-Jiménez M, Navarro R, Valerio M, Machado M, Guinea J, Sánchez-Carrillo C, Alonso R, Muñoz P. Clinical Relevance and Prognostic Value of Persistently Negative (1,3)- β -D-glucan in Adults With Candidemia: A 5-year Experience in a Tertiary Hospital. *Clin Infect Dis*. 2020 Apr 15;70(9):1925-1932. doi: 10.1093/cid/ciz555. PubMed [citation] PMID: 31680136

Costa JM, Botterel F, Cabaret O, Foulet F, Cordonnier C, Bretagne S. Association between circulating DNA, serum (1→3)- β -D-glucan, and pulmonary fungal burden in *Pneumocystis* pneumonia. *Clin Infect Dis*. 2012 Jul;55(2):e5-8. doi: 10.1093/cid/cis412. Epub 2012 Apr 20. PubMed [citation] PMID: 22523258

Ergün M, Brüggemann RJM, Alanio A, Delliére S, van Arkel A, Bentvelsen RG, Rijpstra T, van der Sar-van der Brugge S, Lagrou K, Janssen NAF, Buil JB, van Dijk K, Melchers WJG, Reijers MHE, Schouten JA, Wauters J, Cordey A, Soni S, White PL, van de Veerdonk FL, Verweij PE. Aspergillus test profiles and mortality in critically-ill COVID-19 patients. *J Clin Microbiol*. 2021 Sep 8;JCM0122921. doi: 10.1128/JCM.01229-21. [Epub ahead of print] PubMed [citation] PMID: 34495710

Garcia-Rubio R, de Oliveira HC, Rivera J, Trevijano-Contador N. The Fungal Cell Wall: Candida, Cryptococcus, and Aspergillus Species. *Front Microbiol*. 2020 Jan 9;10:2993. doi: 10.3389/fmicb.2019.02993. eCollection 2019. Review. PubMed [citation] PMID: 31993032

Levesque E, El Anbassi S, Sitterle E, Foulet F, Merle JC, Botterel F. Contribution of (1,3)-beta-D-glucan to diagnosis of invasive candidiasis after liver transplantation. *J Clin Microbiol*. 2015 Mar;53(3):771-6. doi: 10.1128/JCM.03018-14. Epub 2014 Dec 17. PubMed [citation] PMID: 25520448 PMCID PMC4390652

Bulletin Volume 10, issue 1
Publish Date: December 2021
CORP_0294

Corporate Headquarters
Associates of Cape Cod, Inc.
124 Bernard E. Saint Jean Drive
East Falmouth, MA 02536 USA
Tel: (508) 540-3444
www.accusa.com

United Kingdom
Associates of Cape Cod Int'l., Inc.
Deacon Park, Moorgate Road
Knowsley, Liverpool L33 7RX
United Kingdom
Tel: (44) 151-547-7444
www.acciu.co.uk

Europe
Associates of Cape Cod Europe GmbH
Opelstrasse 14
D-64546 Mörfelden-Walldorf, Germany
Tel: (49) 61 05-96 10 0
www.accusa.de

HEPATIC CLEARANCE OF (1→3)- β -GLUCAN; EFFECTS UPON CIRCULATING BDG TITER

Liu L, Gu Y, Wang Y, Shen K, Su X. The Clinical Characteristics of Patients With Nonneutropenic Invasive Pulmonary Aspergillosis. *Front Med (Lausanne)*. 2021 Feb 15;8:631461. doi: 10.3389/fmed.2021.631461. eCollection 2021. PubMed [citation] PMID: 33659265 PMCID: PMC7917130

Mercier T, Aissaoui N, Gits-Muselli M, Hamane S, Praties J, Kessler HH, Mareković I, Pleško S, Steinmann J, Schermann U, Maertens J, Lagrou K, Denis B, Bretagne S, Alanio A. Variable Correlation between Bronchoalveolar Lavage Fluid Fungal Load and Serum-(1,3)- β -D-glucan in Patients with Pneumocystosis-A Multicenter ECMM Excellence Center Study. *J Fungi (Basel)*. 2020 Dec 1;6(4). pii: E327. doi: 10.3390/jof6040327. PubMed [citation] PMID: 33271743 PMCID: PMC7711754

Miura NN, Ohno N, Aketagawa J, Tamura H, Tanaka S, Yadomae T. Blood clearance of (1-->3)-beta-D-glucan in MRL lpr/lpr mice. *FEMS Immunol Med Microbiol*. 1996 Jan;13(1):51-57. PubMed [citation] PMID: 8821398

Miura NN, Ohno N, Adachi Y, Aketagawa J, Tamura H, Tanaka S, Yadomae T. Comparison of the blood clearance of triple- and single-helical schizophyllan in mice. *Biol Pharm Bull*. 1995 Jan;18(1):185-9. PubMed [citation] PMID: 7735240

Sanada Y, Urahashi T, Ihara Y, Wakiya T, Okada N, Yamada N, Hirata Y, Mizuta K. Impact of 3-D glucan during liver transplantation. *Hepatogastroenterology*. 2014 Jul-Aug;61(133):1368-73. PubMed [citation] PMID: 25436313

Sanada Y, Mizuta K, Urahashi T, Ihara Y, Wakiya T, Okada N, Yamada N, Yasuda Y, Kawasaki H. The efficacy of measurement of the serum beta-D glucan in the patients with biliary atresia. *Pediatr Surg Int*. 2012 Oct;28(10):993-6. Epub 2012 Aug 19. PubMed [citation] PMID: 22903261

Styczynski A, Bonilla H, Treynor E, Shashank J, Zhang Y, Finkelman M. Beta-Glucanemia after Coronary Artery Bypass Graft Surgery: A Case Report. *J Fungi (Basel)*. 2018 Oct 2;4(4). pii: E114. doi: 10.3390/jof4040114. PubMed [citation] PMID:30279391 PMCID: PMC6309048

Yamanouchi K, Takatsuki M, Hidaka M, Soyama A, Kanematsu T, Eguchi S. Significance of serum β -D-glucan levels in recipients of living donor liver transplantation. *J Hepatobiliary Pancreat Sci*. 2011 May;18(3):432-5. doi: 10.1007/s00534-010-0363-4. PubMed [citation] PMID: 21120672

Yan J, Vetzicka V, Xia Y, Hanikýrová M, Mayadas TN, Ross GD. Critical role of Kupffer cell CR3 (CD11b/CD18) in the clearance of IgM-opsonized erythrocytes or soluble beta-glucan. *Immunopharmacology*. 2000 Jan;46(1):39-54. PubMed [citation] PMID: 10665778

Yang AM, Inamine T, Hochrath K, Chen P, Wang L, Llorente C, Bluemel S, Hartmann P, Xu J, Koyama Y, Kisseleva T, Torralba MG, Moncera K, Beeri K, Chen CS, Freese K, Hellerbrand C, Lee SM, Hoffman HM, Mehal WZ, Garcia-Tsao G, Mutlu EA, et al. Intestinal fungi contribute to development of alcoholic liver disease. *J Clin Invest*. 2017 Jun 30;127(7):2829-2841. doi: 10.1172/JCI90562. Epub 2017 May 22. PubMed [citation] PMID: 28530644 PMCID: PMC5490775

Yoshida M, Roth RL, Grunfeld C, Feingold KR, Levin J. Pharmacokinetics, biological effects, and distribution of (1→3)- β -D-glucan in blood and organs in rabbits. *Mediators Inflamm*. 1997;6(4):279-83. PubMed [citation] PMID: 18472859 PMCID: PMC2365862

Fungitell®

(1→3)- β -D-Glucan Assay

Bulletin Volume 10, issue 1
Publish Date: December 2021
CORP_0294

Corporate Headquarters

Associates of Cape Cod, Inc.
124 Bernard E. Saint Jean Drive
East Falmouth, MA 02536 USA
Tel: (508) 540-3444
www.acciusa.com

United Kingdom

Associates of Cape Cod Int'l., Inc.
Deacon Park, Moorgate Road
Knowsley, Liverpool L33 7RX
United Kingdom
Tel: (44) 151-547-7444
www.acciu.co.uk

Europe

Associates of Cape Cod Europe GmbH
Opelstrasse 14
D-64546 Mörfelden-Walldorf, Germany
Tel: (49) 61 05-96 10 0
www.acciusa.de